
11

2

I. Executive Summary	... 3

II. Results Overview .. 4

III. Performance Testing Methodology .. 5

IV. Hardware & Software Specifications .. 6

V. Testing the Standard Configuration: Apache with MySQL ... 7

VI. Testing Cache Optimized with Varnish .. 10

VII. Testing Cache Optimized with Nginx .. 13

VIII. Summary: Results & Recommendations ... 17

X. Appendix ... 18

TABLE OF CONTENTS

3

I. Executive Summary
In a world where milliseconds matter, configuring an eCommerce solution for peak performance is essential.
Consumers in the online world have become increasingly impatient, and slower response times can affect
conversion rates. Online merchants also need an eCommerce solution that can grow and adapt quickly to
changing business needs.

Magento Enterprise Edition is designed to meet and exceed these requirements, offering merchants a flexible,
powerful eCommerce platform that can easily scale as their businesses grow. Proper configuration of Magento
Enterprise Edition together with appropriate hardware and software components will equip merchants with
the tools needed to meet their business needs.

This white paper documents the exceptional performance that can be achieved by properly configuring
Magento Enterprise Edition. An optimized configuration includes the use of common caching schemes such
as Varnish and Nginx along with appropriate hardware. With an optimized configuration, Magento is able
to support over 350 million catalog views and 487,000 orders per day with improved response times. The
resulting optimization leads to an increase in capacity to accommodate a greater number of visitors and can
contribute to higher conversion rates, improved hardware efficiency and overall cost savings.

Comparing Configurations

With the goal of optimizing Magento Enterprise Edition for peak performance, the Magento team set out to
identify the optimal hardware and software configuration for a standard 2+1 (two nodes plus one database)
setup.

For comparison, we conducted performance tests on three different configurations:

•	 Standard: Apache + MySQL — The most widely used configuration, combining the Web’s most
popular HTTP server and open-source database.

•	 Cache Optimized with Varnish: Varnish + Apache + Percona MySQL — An optimized configuration
using Varnish (an open-source reverse proxy server), Apache, and Percona’s enhanced version of
MySQL.

•	 Cache Optimized with Nginx: Nginx + PHP-FPM + Percona MySQL — An optimized configuration
of Nginx (a combined web server, caching proxy, and load balancing solution), PHP-FPM (the PHP
FastCGI process manager), and Percona’s enhanced version of MySQL.

The results of our testing—detailed on the following pages—demonstrate that optimizing 2+1 configurations
using Varnish or Nginx can lead to significant increases in performance.

Peer1 Hosting, a respected and experienced hosting provider, provided the servers we used
for the test scenarios.

http://www.peer1.com/hosting/magento-hosting

4

II. Results Overview
Through our testing, we found that a combination of data caching optimization and an appropriate hardware
and software configuration led to improved overall response times, as well as greater processing power for
supporting large numbers of page views and orders per day. With an optimized 2+1 configuration, Magento
Enterprise Edition can support more than 350 million catalog views and 487,000 orders per day.

Making Cache Count

Not surprisingly, the greatest performance improvements we saw resulted from optimizing the caching
configuration and tools. These changes dramatically improved Magento performance by offloading the
application servers.

When it comes to optimization, the main goal is to offload back-end servers by serving as many pages as
possible using third-party caching software in addition to native Magento full page caching. If a page does
not contain any user-specific information, it can be cached. Any subsequent requests for this page can be
satisfied by the third-party cache rather than the application itself. Note, the server performs all caching logic;
therefore, no Magento code changes are required to obtain the benefits derived from page caching. Utilizing
Memcache, which is natively supported by the Magento application, will cache session data, page layouts,
configurations, and product lists. This will significantly improve performance on the servers and offload the
application itself. For detailed cache storage configuration information and the location of the slow and fast
cache sessions, refer to Appendix A. Caching Backends and Session Save Parameters.

In our performance testing the two optimized configurations—Cached Optimized with Varnish and Cache
Optimized with Nginx performed exceptionally well. The external cache provided by Varnish and Nginx with
PHP-FPM shows improvements of up to 500% compared to the Standard configuration (Apache + MySQL).

5

III. Performance Testing Methodology
The various hardware/software configurations were tested by progressively increasing loads while simulating
customer page views and product orders. This test scenario models the typical behavior of visitors and
buyers—viewing products and categories, adding them to their shopping carts, and then submitting orders.

The following eCommerce parameters were set in each test scenario:

•	 Number of websites: 1
•	 Number of stores and store views: 1
•	 Number of categories and products: 50 categories/100,000 products
•	 Users per simulation: 2,800
•	 Conversion rate ranging from 3% – 6%
•	 Concurrency rate: 100 catalog page views/sec

Two test scenarios were used, each of which simulated different user activities.

The first scenario attempted to serve the maximum number of visitors and buyers performing the following
activities:

•	 Navigating the Magento Enterprise Edition catalog and product pages (visitors).
•	 Opening category pages, adding products to the shopping cart, and placing orders via one-page

checkout as non-logged-in users (buyers).

The second scenario served customer visits only. The goal was to serve as many catalog views from one Web
server as possible.

Testing Simulation Tools

To test the performance of Magento Enterprise Edition with different hardware/software configurations, the
following testing tools were used:

•	 Siege v. 2.72 — A load testing and benchmarking utility provided by http://www.joedog.org/siege-
home/

•	 Gatling v. 1.1.0 — An open source stress tool provided by http://gatling-tool.org/1

To run the Gatling test tool, a Java Development Kit must be installed on the server. For instructions, consult the Oracle project documentation.1

http://www.joedog.org/siege-home/
http://www.joedog.org/siege-home/
http://gatling-tool.org/

6

IV. Hardware & Software Specifications
To test Magento Enterprise Edition with different hardware/software configurations, four physical
servers (each having a similar hardware configuration) were used. In accordance with the Peer 1 hosting
recommendations, each test server had the following characteristics:

Hardware

•	 CPU: 2 x Intel® Xeon® CPU E5645 @ 2.40GHz
•	 HDD: RAID1 - LSI MegaRAID SAS 9260-4i; 2 x SAS 164GB 15,000rpm
•	 RAM: 24GB ECC
•	 Network Interface Card: Intel 1GB 82576

Software

The following software was installed on the performance testing servers:

•	 Magento Enterprise Edition 1.11.2.0
•	 Apache 2.2.15, mpm_prefork, mod_php
•	 PHP 5.3.10
•	 MySQL 5.5
•	 Pecl memcache 3.0.6
•	 Varnish 2.1.5
•	 Nginx 1.0.15
•	 PHP-FPM 5.3.10
•	 Percona MySQL 5.5
•	 Memcached 1.4.4
•	 Operating system: Red Hat Enterprise Linux version 6.2 (Santiago) x86_64

7

V. Testing the Standard Configuration: Apache with MySQL
The combination of Apache and MySQL is the standard Magento Enterprise Edition configuration. This
configuration is documented in the Maximizing Performance and Scalability with Magento Enterprise Edition
white paper.

	

Figure 1: Standard Infrastructure: Apache + MySQL

Figure 1 depicts the following servers and software components:

Servers 1 and 2 — Two application servers; each runs the Apache web server, with mod_php installed; each
Apache web server handles both static files and dynamic requests. HAProxy balances requests between each
Apache instance

Server 3 — MySQL database server

Server 4 — Memcache key/value storage, which stores session data, temporary data, and rendered blocks

Data Flows and Servicing

Traffic requests are generated using test simulation tools, such as Gatling or Siege. Requests for static content
are balanced by HAProxy through the two Apache instances. Requests for dynamic content are handled by
the mod_php module built into Apache.

http://info.magento.com/PerformanceWhitePaper.html
http://info.magento.com/PerformanceWhitePaper.html

8

	

Figure 2: Test Results - Standard Configuration (Apache + MySQL)

Test Results

The tests results for the scenarios described in the Performance Testing Methodology section above are
depicted in Figure 2. and represent the number of catalog views and orders created during a 24-hour
period. represents the average response time required to serve a single request. represents the system
load of the Apache server.

Summary of Results:

•	 Number of orders (clients): 2,800
•	 Time required to process all orders: 900 seconds
•	 Orders/per sec (average): 3.11
•	 Response time (average): 2.11 sec
•	 Web server load: 100%
•	 Concurrent visitors: 100 page views/sec

With the Standard configuration, the system was able to serve approximately 268,700 orders and
79,500,000 catalog views per day.

Generic Caching Architecture

To optimize hardware/software configuration with an ideal caching scheme, the following components are
recommended:

•	 Cache server — a caching layer; in this case, either Varnish or Nginx
•	 Application server — one or more servers capable of serving dynamic requests; in this case, the

Apache web server or the PHP FastCGI process manager
•	 Cache storage — storage in RAM or on the disk in which cached documents are stored

A B

C D

9

Figure 3 shows the basic flow of data in an optimized infrastructure:

In an optimized infrastructure, requests are processed as follows:

1.	 The cache server evaluates client requests based on the rules defined in its configuration files and chooses
how the requests should be served, i.e. whether the requests will bypass the cache or be served
from the cache (default case). Some types of exceptions requests require to be served directly by the
application server. Those requests include:

•	 Specific URLs (adding items to the shopping cart, product reviews, customer login, admin login
•	 Presence of the client’s “frontend” cookie
•	 POST requests

All other requests should be served from the cache.

2.	 The requested document (aka information) is looked up in cache storage and is immediately returned to
the client . If the document is not in cache, the cache server forwards the request to the application
server .

3.	 The request is passed to the application server.

4.	 The application server passes requests to MySQL and Memcached, querying and updating data.

5.	 The application server sends the response to the cache server. The cache server sends the response to the
client in the following cases:

•	 If the request-type is not to be cached, it bypasses the cache. All content and cookies (including
the “frontend” and “cart” cookies) sent by the application server are preserved and forwarded to
the client without modification.

•	 The cache server puts the document in the cache. During this process, it unsets cookies, removes
headers (such as Pragma and Cache-control - which prevent caching) and increases the time-to-
live (TTL) value (by setting the Expires header to 1 hour).

6.	 The response is sent to the client.

	

Figure 3: Optimized Infrastructure with Cache Server

2

3

3

6

10

VI. Testing Cache Optimized with Varnish
To improve the software/hardware architecture, the standard MySQL database server was replaced with
Percona MySQL and we included the Varnish caching HTTP reverse proxy.

Varnish accelerates web applications by caching most of the static and dynamic content for them. In the
caching architecture, Varnish is installed immediately in front of the application server that “speaks” HTTP.
The Varnish Configuration Language (VCL) supports writing flexible rules for handling incoming requests and
outgoing responses. For detailed information about the Varnish configuration, refer to Appendix C. Varnish
Configuration. Additional information about Varnish can be found at: http://www.varnish-cache.org/

For this configuration, Percona enhances MySQL in the following ways:

•	 Fine-grained mutex locking
•	 Lock-free algorithms
•	 Buffer pool pre-load
•	 Read-ahead improvements
•	 Shared-memory buffer pool

For more information about Percona MySQL, refer to: http://www.percona.com/

	

Figure 4: Cache Optimized with Varnish (Varnish + Apache + Percona MySQL)

Disclaimer

Please note that Magento does not claim responsibility for Varnish functional behavior. Magento does not guarantee that all features with Varnish
will work as expected. The proposed configurations described in this paper went through extensive load testing, but not full functional testing —
they will not fit all scenarios. The suggested configurations are not part of the Magento product, and Magento will not provide assistance, support,
maintenance services or customization with the setup of the proposed configurations. Magento has no control of the conditions under which
authorized users use the Magento Enterprise software and updates and does not and cannot warrant the results obtained by such use.

http://www.varnish-cache.org/
http://www.percona.com/

11

The servers shown in Figure 4 have the following components installed:

Server 1 — Reverse proxy server running Varnish. It caches both static and dynamic requests and proxies
certain dynamic requests to the application servers (in this case, Apache). The server also has one instance of
the Apache web server to handle both static files and dynamic requests. Apache uses mod_php.

Server 2 — Apache web server with mod_php, which also handles both static files and dynamic requests.

Server 3 — MySQL database server.

Server 4 — memcache key/value storage, which stores session and temporary data and rendered blocks.

Data Flows and Servicing

Varnish acts as a cache server, implementing all cache logic and distributing requests among Apache
instances. By evaluating client requests based on pre-defined rules in its configuration files, Varnish chooses
how these requests should be routed — whether the requests bypass the cache and are proxies to Apache, or
served directly from the cache.

As for handling static content — such as images, cascading style sheets, and JavaScript files — Varnish looks
up the requested document in its cache and returns it to the client immediately upon a hit. If the document is
not in cache, Varnish requests the document from Apache, adds the document to the cache, and replies to the
client. All subsequent requests for this specific document are served directly from the cache.

When handling requests to Magento with *.php and *.html dynamic pages, Varnish sends the response to
the client by either bypassing the cache (if the content is not to be cached) or by adding the document to
the cache and simultaneously responding to the requestor. For additional details on responses to dynamic
requests, see the Generic Caching Architecture section above.

Because each reply served from cache is sent without a cookie, the following situation may occur:

•	 A customer adds a product to the shopping cart.
•	 Magento checks for the presence of cookies sent as a part of the request.
•	 If no cookies are found, Magento redirects the customer to the static page, asking to enable

browser cookie support.

To prevent this situation, a dummy cookie must be set up on the server side cache.

Test Results

The infrastructure optimized with Varnish full-page caching significantly decreased response time to the client
and offloaded the Apache instances. In addition, the Varnish Configuration Language (VCL) provided a way to
describe flexible and advanced caching logic. Using Percona, MySQL yields additional benefits, such as better
scaling in multiprocessor environments.

Figure 5 shows the results of the two scenarios described in the Performance Testing Methodology section
above, as applied to the Standard configuration (Apache + MySQL) and Cached Optimized with Varnish
(Varnish + Apache + Percona MySQL). The figure compares the catalog views and orders that were created
during a 24-hour period both in the standard and optimized infrastructures. In addition, the figure shows the
average response time the system requires in serving a single request. The CPU load in both configurations

12

	

Figure 5: Standard Configuration (Apache + MySQL) vs. Cache Optimized with Varnish (Varnish + Apache +
Percona MySQL) Test Results

Summary of Results:

•	 Number of orders (clients): 2,800
•	 Time required to process all orders: 496 sec
•	 Orders/per sec (average): 5.65
•	 Response time (average): 1.052 sec
•	 CPU load: 100%
•	 Concurrent visitors: 100 page views/sec

The system was able to serve approximately 487,300 orders or 79,500,000 catalog views per 24-hour
period. The CPU load on web servers during the orders scenario test was as high as it was in the Standard
Apache + MySQL architecture (close to 100%). However, due to the aggressive caching of static files as
well as catalog pages, the bar was raised to handle 1.8 times additional orders. This architecture can easily
serve more than 4,000 catalog page views per second from a single server with Varnish — whereby the only
limiting factor is the network interface (1Gbit in these tests). To increase the number of catalog pages served
to a client, you can add extra network cards or set up a 10Gbit network. For scaling dynamic content, you
must add extra application servers.

reached 100% for order creation. For catalog visits, the optimized configuration only reached 4% of CPU
utilization resulting in more bandwidth to handle dynamic operations.

13

VII. Testing Cache Optimized with Nginx
An additional cache-optimized configuration, leveraging the synergy of the Nginx web server, the PHP FastCGI
process manager and the Percona MySQL database manager was tested. This configuration was chosen
because of the following considerations:

•	 Nginx provides a unique combination of a web server, a caching proxy with a low memory footprint
and a load balancing solution. For serving large amounts of static traffic, Nginx requires fewer
system resources than the Apache web server. For more information, refer to this website:
http://nginx.com/.

•	 PHP-FPM (PHP FastCGI Process Manager) handles dynamic requests as an application server. It
communicates with Nginx via the FastCGI protocol. Compared to Apache, PHP-FPM has lower
memory footprint requirements. For more information about PHP-FPM, refer to this website:
http://php-fpm.org/.

•	 MySQL is enhanced by the Percona support with benefits as outlined above. For more information,
refer to this website: http://www.percona.com/.

For detailed information about the configuration of Nginx and PHP-FPM, refer to Appendix D. Nginx and PHP-
FPM Configuration.

	

Figure 6: Cache Optimized Infrastructure with Nginx

The Nginx optimized configuration requires the following servers and software components:

Server 1 — This server has Nginx installed. Nginx serves static files directly from the disk and caches dynamic
content as much as possible. It proxies certain dynamic requests to the application servers - in this case,
PHP-FPM. The server also contains one instance of PHP-FPM which is the FastCGI server for servicing PHP
requests.

Server 2 — This server has the second instance of the PHP-FPM application server for servicing PHP requests.

Server 3 — MySQL database server.

http://nginx.com/
http://php-fpm.org/
http://www.percona.com/

14

Server 4 — This server has the memcache key/value storage, which stores session and temporary data and
rendered blocks.

Data Flows and Servicing

Nginx acts as a cache server implementing all cache logic and distributing requests between the PHP-FPM
instances. Based on the rules defined in its configuration files, Nginx chooses how to handle requests from the
application server by evaluating the client requests. The incoming request either bypasses the cache and goes
to the PHP FastCGI process manager or is served directly from the cache.

Because Nginx is a full-fledged web server, it can manage client requests for static content on its own. When
a client requests images, cascading style sheets, or JavaScript files, Nginx gets this static content on the disk
and returns it to the client immediately.

Nginx handles dynamic *.php and *.html files in one of the following ways:

•	 If a client provides the “front end” and “client_auth” cookies or requests a specific URL (e.g., the
URL for adding a product to the shopping cart, for a product comparison, for customer login, or
for store administrator back-end login), Nginx passes the request to the PHP-FPM instance. Nginx
then generates the response based on the information received from PHP-FPM and sends it to the
client, bypassing the cache

•	 If no cookie was provided and no predefined URLs were requested, Nginx serves the document to
the client directly from the disk

Because each reply is served from cache without a cookie, the following situation may occur:

•	 A customer adds a product to the shopping cart
•	 The Magento system checks for the presence of cookies sent as a part of the request
•	 If no cookies are found, Magento redirects the customer to the static page asking to enable

browser cookie support

To prevent this situation, a dummy cookie must be set up on the server-side cache.

15

Test Results

The infrastructure optimized with Nginx and FastCGI caching results in a decrease response time and offloads
the PHP-FPM instances. This can be achieved with the caching feature built into the Nginx FastCGI module.
The use of Percona MySQL yields additional benefits, such as better scaling in multiprocessor environments.

Summary of Results:

•	 Number of orders (clients): 2,800
•	 Time required to process all orders: 460 sec
•	 Orders/per sec (average): 6.09
•	 Response time (average): 1.237 sec
•	 CPU load: 100%
•	 Concurrent visitors: 100 page views/sec

With a configuration optimized by implementing caching inside the FastCGI module of the Nginx server,
the system was able to serve approximately 525,300 orders or 373,200,000 catalog views per 24-hour
period. During an order scenario test, the CPU load on the web servers was as high as it was on the Standard
configuration. However, this configuration managed to offload the system by serving static files to Nginx
and aggressively caching catalog pages. This resulted in almost doubling the number of orders created. This
architecture can easily serve more than 4,000 catalog page views per second from a single server with Nginx
— the only limiting factor is the network connectivity (1Gbit in these tests). To increase the number of catalog
pages served to the client, you can add extra network cards or set up a 10Gbit network. For scaling dynamic
content, you must add extra application servers.

General Performance Findings

Optimizing the hardware/software configuration with Varnish or Nginx produces impressive results. However,
due to differences in their designs, each configuration improves performance in different areas. While Nginx
produces better server response times, Varnish does better when it comes to the amount of data being
processed.

	

Figure 7: Test Results - Standard Configuration (Apache + MySQL) vs. Cache Optimized with Nginx (Nginx +

PHP-FPM + Percona MySQL)

16

	

Figure 8: Comparison of Optimized Architectures

17

VIII. Summary: Results & Recommendations
Proper configuration of Magento Enterprise Edition with the appropriate hardware capabilities and software
configuration can lead to a significant improvement in overall system performance. Using Varnish or Nginx as
a caching mechanism greatly offloads the application servers from serving dynamic requests. This results in
faster response times and allows more requests to be processed by the application server.

The following points summarize the key findings presented for each configuration and provide additional
considerations when optimizing a system:

•	 Using operation code caching provided by the APC accelerator and memcached for storing
sessions and temporary data results in significant improvements in overall system performance.
For more information on APC accelerators and memcahce, refer to the Maximizing Performance
and Scalability with Magento Enterprise Edition white paper.

•	 Using Nginx with PHP-FPM slightly outperforms Varnish with Apache (by 8%).
•	 While consuming very little CPU time, both Nginx and Varnish process static files more rapidly

compared to Apache. This improvement can be further scaled by adding network cards.
•	 For the tested scenarios, the database server is not a bottleneck if using one to five application

servers. The main bottleneck is the application server CPU bandwidth. With more servers
dedicated to handling dynamic requests, more orders can be processed.

•	 When serving non-cacheable content, the caching layer causes significant delay and decreased
response times — by at least 40 times. This results in a net positive outcome.

•	 By offloading Apache from serving static content, the number of orders handled almost doubles.
By using external full-page caching, the number of catalog views can be increased up to 5 times
compared to the standard architecture.

•	 In terms of performance, the caching implementation of Nginx is as efficient as that of Varnish.
Thus, it is possible to use Nginx as an alternative to Varnish as a full-page caching solution.

•	 When deciding between Varnish and Nginx, consider these points: Nginx can be a point of SSL
termination; it provides flexible virtual hosting; and preserves cache between restarts. On the
other hand, Varnish supports more flexible cache rule definitions due to the Varnish Configuration
Language.

•	 Having a caching layer on two application servers allows the system to survive a single application
server failure. If you implement a cache on both servers, use either Active-Passive mode to avoid
double caching, or use Active-Active mode behind the load balancer to serve more traffic.

Disclaimer

Magento does not claim responsibility for third-party hardware or software discussed in this paper. Magento does not guarantee that all features
will work as expected. The proposed configurations described in this paper went through extensive load testing, but not full functional testing. The
tested configurations were conducted in a lab environment. Results may vary depending on specific deployment configurations. The suggested
configurations are not part of the Magento product, and Magento will not provide assistance, support, maintenance services or customization
with the setup of the proposed configurations. Magento has no control of the conditions under which authorized users use the Magento Enterprise
software and updates and does not and cannot warrant the results obtained by such use.

http://info.magento.com/PerformanceWhitePaper.html
http://info.magento.com/PerformanceWhitePaper.html

18

X. APPENDIX

Appendix A. Caching Backends and Session Save Parameters

local.xml
<session_save><![CDATA[memcache]]></session_save>
<session_save_path><![CDATA[tcp://localhost:11211?persistent=1&weight=2&timeout=10&retry_
interval=10]]></session_save_path>
<cache>
<backend>database</backend>
<memcached>
<servers><!-- any number of server nodes can be included -->
<server1>
<host><![CDATA[localhost]]></host>
<port><![CDATA[11211]]></port>
<persistent><![CDATA[1]]></persistent>
<weight><![CDATA[2]]></weight>
<timeout><![CDATA[10]]></timeout>
<retry_interval><![CDATA[10]]></retry_interval>
<status><![CDATA[]]></status>
</server1>
<!--
<server2>
...
</server2>
-->
</servers>
<compression><![CDATA[0]]></compression>
<cache_dir><![CDATA[]]></cache_dir>
<hashed_directory_level><![CDATA[]]></hashed_directory_level>
<hashed_directory_umask><![CDATA[]]></hashed_directory_umask>
<file_name_prefix><![CDATA[]]></file_name_prefix>
</memcached>
</cache>

Appendix B. Full Page Cache Configuration
FPC is stored on memcache storage

enterprise.xml
<config>
 <global>
	 <cache>
 <request_processors>
 <ee>Enterprise_PageCache_Model_Processor</ee>
 </request_processors>
 </cache>
 <full_page_cache>
 <prefix>s0meStrInG</prefix>
 <backend>memcached</backend>

19

 <memcached>
	 <servers>
 <server1>
 <host><![CDATA[host IP address]]></host>
 <port><![CDATA[port]]></port>
 <persistent><![CDATA[1]]></persistent>
 <weight><![CDATA[2]]></weight>
 <timeout><![CDATA[5]]></timeout>
 <retry_interval><![CDATA[5]]></retry_interval>
 </server1>
 </servers>
 <compression><![CDATA[0]]></compression>
 <cache_dir><![CDATA[]]></cache_dir>
 <hashed_directory_level><![CDATA[]]></hashed_directory_level>
 <hashed_directory_umask><![CDATA[]]></hashed_directory_umask>
 <file_name_prefix><![CDATA[]]></file_name_prefix>
 </memcached>
 <slow_backend>database</slow_backend>
 </full_page_cache>
 <skip_process_modules_updates>0</skip_process_modules_updates>
 </global>
</config>

Appendix C. Varnish Configuration
Configuration for native Magento (without extension)

/etc/init.d/varnish.vcl
backend web1 {
 .host = “Apache IP”;
 .port = “8080”;
}

backend web2 {
 .host = “Apache IP”;
 .port = “8080”;
}

director apache round-robin {
 { .backend = web1; }
 { .backend = web2; }
}

acl purge {
 “127.0.0.1”;
}

sub vcl_recv {
 set req.backend = apache;

20

 if (req.request != “GET” && req.request != “HEAD”) {
 return (pass);
 }

 # purge request
 if (req.request == “PURGE”) {
 if (!client.ip ~ purge) {
 error 405 “Not allowed.”;
 }
 purge(“obj.http.X-Purge-Host ~ “ req.http.X-Purge-Host “ && obj.http.X-Purge-URL ~ “ req.http.X-Purge-
Regex “ && obj.http.Content-Type ~ “ req.http.X-Purge-Content-Type);
 error 200 “Purged.”;
 }

 if (req.url ~ “^/(media|js|skin)/.*\.(png|jpg|jpeg|gif|css|js|swf|ico)$”) {
 unset req.http.Https;
 unset req.http.Cookie;
 }

 if (req.http.Authorization || req.http.Https) {
 return (pass);
 }

 include “/etc/varnish/no_cache.vcl”;

 # remove Google gclid parameters
 set req.url = regsuball(req.url,”\?gclid=[^&]+$”,””); # strips when QS = “?gclid=AAA”
 set req.url = regsuball(req.url,”\?gclid=[^&]+&”,”?”); # strips when QS = “?gclid=AAA&foo=bar”
 set req.url = regsuball(req.url,”&gclid=[^&]+”,””); # strips when QS = “?foo=bar&gclid=AAA” or QS =
“?foo=bar&gclid=AAA&bar=baz”

 if (req.http.cookie ~ “frontend=”) {
 return (pass); }

 return(lookup);

}

sub vcl_hash {

 set req.hash += req.url;

 if (req.http.host) {
 set req.hash += req.http.host;
 } else {
 set req.hash += server.ip; }

 return (hash);
}

21

sub vcl_fetch {

 if (beresp.status == 500) {
 set beresp.saintmode = 10s;
 restart; }

 set beresp.grace = 5m;

 unset beresp.http.Server;

 if (beresp.status == 200 || beresp.status == 301 || beresp.status == 302) {

 if (req.url ~ “^/(media|js|skin)/.*\.(png|jpg|jpeg|gif|css|js|swf|ico)$”) {
 unset req.http.Https;
 unset req.http.Cookie;
 return (deliver);
 }

 if (beresp.http.Content-Type ~ “text/html” || beresp.http.Content-Type ~ “text/xml”) {
 if (req.http.Cookie ~ “frontend=”) {
 return (pass); }

 ##URLs we ignore:
 include “/etc/varnish/no_cache.vcl”;
 set beresp.http.Set-Cookie = “X-Store=1; path=/”;

 if (beresp.ttl < 120s) { set beresp.ttl = 3600s; }
 unset beresp.http.set-cookie;
 set beresp.http.Set-Cookie = “X-Store=1; path=/”;

 }
 }

 if (beresp.status == 404) {
 if (beresp.ttl < 120s) { set beresp.ttl = 5s; }
 unset beresp.http.set-cookie;
 }
 return (deliver);
}

sub vcl_deliver {
 remove resp.http.X-Varnish;
 remove resp.http.Via;
 remove resp.http.Age;
 remove resp.http.X-Purge-URL;
 remove resp.http.X-Purge-Host;

22

##BEGIN debug section
 if (obj.hits > 0) {
 set resp.http.X-Varnish-Cache = “HIT”;
 }
 else {
 set resp.http.X-Varnish-Cache = “MISS”;
 }
##END debug section

}

sub vcl_error {
 set obj.http.Content-Type = “text/html; charset=utf-8”;
 synthetic {“
<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
 <head>
 <title>”} obj.status “ “ obj.response {“</title>
 </head>
 <body>
 <h1>Error “} obj.status “ “ obj.response {“</h1>
 <p>”} obj.response {“</p>
 <h3>Guru Meditation:</h3>
 <p>XID: “} req.xid {“</p>
 <hr>
 <p>Varnish cache server</p>
 </body>
</html>
“};
 return (deliver);
}

/etc/varnish/no_cache.vcl
if ((req.url ~ “^/(index.php)/(admin)”) || (req.url ~ “^/(admin)”)) {
 return (pass); }

if (req.url ~ “^/(index.php)/(install)”) {
 return (pass); }

if (req.url ~ “^/(checkout)/(cart)”) {
 return (pass); }

if (req.url ~ “^/(review)/(product)”) {
 return (pass); }

if (req.url ~ “^/(customer)/(account)”) {
 return (pass); }

23

Appendix D. Nginx and PHP-FPM Configuration

/etc/nginx/nginx.conf
user nginx;
worker_processes 12;
error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main ‘$remote_addr - $remote_user [$time_local] $request ‘
 ‘”$status” $body_bytes_sent “$http_referer” ‘
 ‘”$http_user_agent” “$http_x_forwarded_for”’;

 log_format cache ‘***$time_local ‘
 ‘Cache Status: “$upstream_cache_status” ‘
 ‘Cache-Control: $upstream_http_cache_control ‘
 ‘Expires: $upstream_http_expires ‘
 ‘”$request” ($status) in $request_time ‘;

 access_log /var/log/nginx/access.log main;

 gzip off;
 server_tokens off;
 open_file_cache max=10000 inactive=30m;
 open_file_cache_valid 10m;
 open_file_cache_min_uses 2;
 open_file_cache_errors on;

 proxy_read_timeout 60;

 sendfile on;
 tcp_nopush on;
 keepalive_timeout 10;
 client_max_body_size 120m;
fastcgi_cache_path /var/cache/nginx levels=1:2 keys_zone=mage:16m max_size=10g
inactive=10h;
 fastcgi_cache_path /var/cache/nginx levels= keys_zone=mage:16m max_size=10g inactive=10h;

 upstream phpfpm {
 server 127.0.0.1:9000;
 server 192.168.1.4:9000;
 }

24

server {
 listen 80 default;
 include /etc/nginx/frontend.conf;
 }
 include /etc/nginx/conf.d/*.conf;

}

/etc/nginx/frontend.conf
server_name magentoee.lan; #Domain name
root /var/www/magentoee; #Document root for magento instance

access_log /var/log/nginx/cache.log cache;

location ~* ^.+\.(jpg|jpeg|gif|png|ico|css|zip|tgz|gz|rar|bz2|pdf|txt|tar|wav|bmp|rtf|js|flv|swf)$ {
 root /var/www/magentoee;
}

location /index { try_files $uri @fcgi_nocache; }

location /checkout { try_files $uri @fcgi_nocache; }

location / {
 try_files $uri @fcgi_cache;
 if ($cookie_frontend) { return 413; }
 if ($cookie_CUSTOMER_AUTH) { return 413; }
 if ($request_method = POST) { return 413; }
 error_page 413 = @fcgi_nocache;
 }

location @fcgi_cache {
 fastcgi_pass phpfpm;
 include fastcgi_params;
 fastcgi_connect_timeout 60;
 fastcgi_send_timeout 60;
 fastcgi_read_timeout 60;
 fastcgi_buffer_size 4k;
 fastcgi_buffers 512 4k;
 fastcgi_busy_buffers_size 8k;
 fastcgi_temp_file_write_size 256k;
 fastcgi_intercept_errors off;
 fastcgi_param SCRIPT_FILENAME $document_root/index.php;
 fastcgi_param SCRIPT_NAME /index.php;
 #fastcgi_keep_conn on; # NGINX 1.1.14
 fastcgi_temp_path /var/tmp 1 2;
 fastcgi_cache mage;
 fastcgi_cache_key “$request_method|$http_if_modified_since|$http_if_none_
match|$host|$request_uri”;
 #fastcgi_cache_lock on 5s; # NGINX 1.1.12
 fastcgi_cache_valid 200 301 302 304 1h;

25

 fastcgi_hide_header “Set-Cookie”;
 if ($http_cookie !~ “X-Store=1”) {
 add_header Set-Cookie “X-Store=1; path=/”;
 }
 fastcgi_ignore_headers “Cache-Control” “Expires” “Set-Cookie”;
 fastcgi_cache_min_uses 1;
 fastcgi_cache_valid 30m;
 fastcgi_cache_use_stale updating error timeout invalid_header http_500;
 fastcgi_cache_bypass $cookie_EXTERNAL_NO_CACHE $cookie_CUSTOMER_AUTH;
 fastcgi_no_cache $cookie_EXTERNAL_NO_CACHE $cookie_CUSTOMER_AUTH;
}

location @fcgi_nocache {
 fastcgi_pass phpfpm;
 fastcgi_connect_timeout 60;
 fastcgi_send_timeout 60;
 fastcgi_read_timeout 60;
 fastcgi_buffer_size 4k;
 fastcgi_buffers 512 4k;
 fastcgi_busy_buffers_size 8k;
 fastcgi_temp_file_write_size 256k;
 fastcgi_intercept_errors off;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root/index.php;
 fastcgi_param SCRIPT_NAME /index.php;
 #fastcgi_keep_conn on; # NGINX 1.1.14
 fastcgi_temp_path /var/tmp 1 2;
 if ($http_cookie !~ “X-Store=1”) {
 add_header Set-Cookie “X-Store=1; path=/”;
 }

Configuration of PHP-FPM
php-fpm.conf
[global]
pid = /var/run/php-fpm/php-fpm.pid
error_log = /var/log/php-fpm/error.log
[www]
listen = 0.0.0.0:9000
listen.backlog = -1
listen.allowed_clients = 127.0.0.1,192.168.1.1
user = apache
group = apache
pm = static
pm.max_children = 800
pm.start_servers = 200
pm.min_spare_servers = 200
pm.max_spare_servers = 200
pm.max_requests = 10000

26

slowlog = /var/log/php-fpm/www-slow.log
php_admin_value[error_log] = /var/log/php-fpm/www-error.log
php_admin_flag[log_errors] = on

27

© 2012 Magento, a division of X.commerce, an eBay Inc. company
10441 Jefferson Blvd. Suite 200 Culver City, CA 90232
www.magento.com

http://www.magento.com

